Path intergal methods using Feynman-Kac formula and reflecting Brownian motions for Neumann and Robin Problems

نویسنده

  • Yijing Zhou
چکیده

In this dissertation, we propose numerical methods for computing the boundary local time of reflecting Brownian motion (RBM) in 3d and its use in the probabilistic representation of the solution of the Laplace equation with the Neumann and Robin boundary conditions respectively. Approximations of RBM based on a walk-on-spheres (WOS) and random walk on lattices are discussed and tested for sampling RBM paths and their applicability in finding accurate approximation of the local time and discretization of the probabilistic formula. Numerical tests for a cube domain have shown the convergence of the numerical methods as the time length of RBM paths and number of paths sampled increases. Spherical, ellipsoidal, nonconvex domains were also tested to prove the efficiency and accuracy of the algorithm. Moreover, an exterior Neumann problem of a many-spheres system further demonstrated the effectiveness of the method even the starting point of the path lying exactly on the boundary. Additionally, the application in electrical impedance tomography to solve the forward problem further demonstrates the simplicity and efficiency of our approach, which is extremely important for some reconstruction methods of the inverse problem. Other applications in material science in calculating the electrical properties of materials in special shapes are also discussed as possible future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of the Robin Problem of Laplace Equations with a Feynman-Kac Formula and Reflecting Brownian Motions

In this paper, we present numerical methods to implement the probabilistic representation of third kind (Robin) boundary problem for the Laplace equations. The solution is based on a Feynman–Kac formula for the Robin problem which employs the standard reflecting Brownian motion (SRBM) and its boundary local time arising from the Skorokhod problem. By simulating SRBM paths through Brownian motio...

متن کامل

Moments of 2d Parabolic Anderson Model

In this note, we use the Feynman-Kac formula to derive a moment representation for the 2D parabolic Anderson model in small time, which is related to the intersection local time of planar Brownian motions.

متن کامل

Wiener Integration for Quantum Systems: A Unified Approach to the Feynman-Kac formula

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

ua nt - p h / 97 03 03 1 v 1 1 8 M ar 1 99 7 Wiener Integration for Quantum Systems : A Unified Approach to the Feynman - Kac formula ∗

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016